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ABSTRACT 
 
Automatic speech recognition (ASR) in noisy environments requires innovative use of disparate 
technology to overcome the special demands caused by multiple speakers and minimal Signal to Noise 
Ratios (SNR).  Use of non-airborne acoustic sensors (physiological sensors) for ASR imposes special 
requirements on speech engines due to the changes in spectral information caused by alternative pickup 
locations.  Specifically, the relative powers of voiced and non-voiced components are often reversed when 
compared to relative powers of these components collected with conventional microphone technology.  
Our research entails the evaluation of various ASR sampling configurations in conjunction with different 
body location points for the physiological sensor.  Sensor detectable physiology provides clues to a user’s 
stress, cognition, and general health, thus our physiological sensor package supports the ability to 
perform speech recognition and medical monitoring (two capabilities for the price of one sensor).  For 
ASR, our goal is to build a suite of optimal sampling configurations for several strategic body locations 
(e.g., throat, temple, thorax, etc.).  The experimental design includes traditional word error rate and 
subjective task completion components.  These experiments were conducted in environments with speech 
SNR ranges of 10, 3, and 0, decibels.  These speech SNR ranges cover the acceptable commercial ASR 
environment of 10dB to ranges where commercial ASR systems with conventional microphone technology 
are completely ineffective.  Our pilot study indicated excellent performance for a sensor that is throat 
located. 

1. Introduction 

ARL has developed sensor technology to monitor a soldier’s voice and physiology by using enhanced 
acoustic sensors. The sensors consist of a fluid or gel contained within a small, conformable, rubber 
bladder or pad that also includes a hydrophone. This enables the collection of high signal-to-noise ratio 
(SNR) cardiac, respiratory, voice, and other physiological data. The pad also minimizes interference from 
ambient noise because it couples poorly with airborne noise. It is low cost and comfortable to wear for 
extended periods. 

ARL further developed (with support from the United States Military Academy), a Hidden-Markov 
Model (HMM) phoneme-level speech system optimized for the physiological sensor package. Lab 
observations indicated tremendous potential for use in automatic speech recognition under quiet and very 
high noise conditions. The next step was to develop an experimental design to test the effectiveness of the 
sensor in a more controlled setting. 



 

 

2. Experimental design (the pilot study) 

2.1. Training  

Our investigation considered two kinds of recognizers. Those trained on data collected via the 
physiological contact sensor (physiological) and those trained on data collected via the conventional 
airborne microphone (airborne) and two kinds of speech waveform data, data input via the physiological 
and data input through the airborne microphone. It is reasonable to assume that under any conditions, 
airborne recognizers will work better on airborne data than physiological recognizers, and physiological 
recognizers will work better on physiological data than airborne recognizers. We claim however, that in 
environments with high levels of ambient noise, error rates for physiological recognizers will always be 
lower than for airborne recognizers. To show this, several separate recognizers should be developed. We 
have so far trained two recognizers, one exclusively on physiological data and the other exclusively on 
airborne data. Both of these sets of training data were collected in a quiet studio-like environment. We 
considered the following variables for recognizer training: input device and speech SNR levels. The input 
data streams take on three values: physiological, airborne, and both airborne and physiological.  The noise 
level variable would ideally take on a continuum, but for our current project we focus on three values 0-, 
3-, and 10dBA SNR. Follow-on experiments could introduce more sophisticated acoustic models, such as 
phonetic granularity that would take on the values of mono, bi, or triphones. 

2.2. The Corpus  

Training a speech recognizer requires a large database of speech signals. Such a database is referred to as 
a corpus. Our corpus was collected by, and composed of speech samples from, members of the 
Department of Foreign Languages at the United States Military Academy (USMA) with the following 
conditions. The donors to the corpus also known as informants, were asked to read from a prepared set of 
50 phrases. To sharpen our initial results we restricted our set of informants to male native English 
speakers. The 35 informants donated their speech to our corpus. Each informant read the script 5 times 
under 4 different ambient noise levels while wearing the two sensors. The physiological sensor was 
strapped on to the right side of the throat, and a head-mounted airborne microphone was positioned to the 
front of the mouth via a boom configuration. Each training subject read the script twice in quiet 
conditions. Then the speech SNR of a typical speaker in the recording booth was set sequentially at 10-, 
3-, and 0-dB by repeatedly playing a spectrally stable section of a recording from inside the turret of an 
M1A1 tank traveling at 25 kph. Both sensors were sampled at 44.1 kHz and quantized to 16 bits by a 
standard PC soundcard. 

2.3. The Models  

All recognizers developed in this experiment were based on Hidden Markov Models (HMM). We used 
Entropic’s HTK for development, training, and testing of the models. We extracted from the waveform 
data 39 dimensional parameter vectors consisting of 12 Mel cepstral coefficients, 1 energy component, 13 
first order regression components calculated from the first 13 components, and similarly 13 second order 
regression components calculated from the second 13 components. Each emitting state of the HMMs has 
a corresponding 39 dimensional mean vector and a 39 by 39 diagonal covariance matrix obtained from 
the parameter vectors. These statistics characterize a gaussian distribution that models the generation of 
the observed speech data. The transitions between states in the HMMs are probabilistic, so each HMM 
has an upper triangular transition matrix whose entries are calculated from state transition occurrence 
counts.  



 

 

2.4. The Phonetic Transcription  

Before transcribing speech into phonetic segments, a decision must be made concerning the granularity of 
the segments that will be used in the transcription. The granularity can range from a broad transcription 
that only uses two symbols v and c to denote vowels and consonants to a narrow phonetic transcription 
that uses close to 100 symbols and includes transcriptions of breathing sounds in addition to phonemes 
and all phones. In other words, the transcriber must decide on a list of symbols that he will use in 
transcribing the speech. There are several lists of phonetic units that have been widely used in speech 
recognition research, e.g. the DARPABET, TIMIT, CMU, etc. We chose to use the CMU phone list in 
this pilot study, because we have access to the CMU pronouncing dictionary and thus we saved ourselves 
considerable effort by not having to phonetically transcribe most of the words in our vocabulary. 
However, we performed some modifications to the CMU phone list and its dictionary for our purposes. 
We replaced dd, kd, pd, and td, by d, k, p, and t respectively. We added three words that were in our data 
collection script but were missing from the CMU dictionary. For each phone in the resulting list of 41 
phones we made one monophone which is a standard 5-state (only 3 emitting), HMM.  

2.5. The Training Strategy  

The first 21 subjects (designated trainers) were used to build the speaker independent HMM models for 
both the physiological and airborne sensors.  The remaining 14 subjects (designated testers) were reserved 
for actual tests of the models and performed no training. We used a flat start and Baum Welch embedded 
re-estimation training strategy. To bootstrap the Baum Welch embedded re-estimation training algorithm 
we initialized the HMMs with the global covariance matrix. The global covariance matrix is calculated 
over all of the data and stored in each of the HMMs. After a couple of training iterations a short pause t-
model was inserted between words and training continued. Then we used forced alignment to allow the 
recognizer to choose between the silence and short pause models between words. Finally, we gradually 
increased the number of gaussians up to 28 mixtures.  

2.6. The Language Model  

Since we want to measure the performance of the sensors as front-ends of the ASR engines, and not that 
of the HMM models themselves, we employed acoustic and language models that were simple in design 
but challenging for the models. In later experiments we intend to focus on optimizing the performance of 
the system as a whole by introducing more sophisticated modeling techniques like triphone acoustic 
models, statistical language models, and larger vocabularies. But for this pilot study, we used 
monophones for our acoustic models and simple sentence and word loops for our language models. Our 
first experiments were performed on sentence loops. By “sentence loop” we mean a language model that 
restricts the possible recognized sentences to the list of sentences in the corpus. In other words, the 
recognizer only “knows” the 50 sentences in the corpus and selects the most probable. After generating 
1,000,000 sentences, HTK measured the empirical perplexity (average word branching factor) of this 
language model at 2.5, this is considered a simple grammar (a complex full grammar network is 
computed to be approximately nine). A word loop is a language model in which every word in the 
vocabulary can follow any other word. Here “vocabulary” refers to the list of the 153 unique words that 
appear in the corpus. The longest sentence in our set of prompts has ten words, so we constrain the 
language model to only generate sentences of at most ten words in length. The empirical perplexity of our 
language model after generating 1,000,000 sentences was measured by HTK at 183.9 (high, because all 
words branch). 



 

 

3. Results 

The tables below illustrate the relative performance of each sensor. Note that this data represents the 
results of the 14 test subjects using the speaker independent models. 
 

Sentence Loop Model  
[% Perfect Sentence Recognition] 

dB AIRBORNE PHYSIOLOGICAL 
0 40.6 96.5 
3 60.7 98.7 

10 98.7 99.4 

Table 3.1. Sentence Loop Language Model 

 
Word Loop Model  

[%Accuracy] 
dB AIRBORNE PHYSIOLOGICAL 
0 -0.1 39.6 
3 12.8 50.5 

10 51.5 66.8 

Table 3.2. Word Loop Language Model 
 

The columns headed AIRBORNE contains error rates for the airborne recognizer and airborne test data, while the columns headed 
PHYSIOLOGICAL contains word error rates for the PHYSIOLOGICAL trained recognizer and physiological test data. 

 
Table 3.3. Complete Test Subject Data 

This table provides the test results for the 14 test subjects as evaluated by two commonly accepted word-accuracy-rate measurements. 
 

Pilot Results for Airborne Sensor Using Airborne HMM 
 S/N = 10 dBA S/N = 3 dBA S/N = 0 dBA 

Informant %Corr %Acc %Corr %Acc %Corr %Acc 
2200a 97.5 97.5 66.3 60.1 55.1 44.1 
5959a 100.0 100.0 60.4 56.7 40.4 31.4 
5601a 100.0 100.0 62.5 55.1 26.5 14.7 
5452a 100.0 100.0 60.0 53.1 24.1 15.1 
2955a 94.3 91.8 15.9 7.8 17.6 10.6 
2852a 97.6 97.6 47.4 38.0 23.7 14.3 
2655a 98.4 98.4 79.1 74.8 69.8 63.3 
5816a 100.0 100.0 62.0 55.9 52.3 46.0 
4625a 98.4 98.4 90.5 88.0 71.1 66.2 
3205a 100.0 100.0 78.8 77.1 65.7 60.0 
2854a 100.0 100.0 82.6 78.7 58.7 51.9 
3113a 100.0 100.0 92.7 89.8 82.5 79.6 
4030a 100.0 100.0 62.7 53.6 40.9 30.8 
5203a 100.0 100.0 93.9 89.0 70.6 60.1 

       
Mean 99.0 98.8 68.2 62.7 49.9 42.0 

Standard 
Deviation 

1.7 2.2 20.7 22.6 21.1 22.7 

 

Pilot Results for Physiological Sensor Using Physiological HMM 
 S/N  = 10 dBA  S/N = 3 dBA S/N = 0 dBA 

Informant  %Corr %Acc %Corr %Acc %Corr %Acc 
2200c 100.0 100.0 100.0 100.0 100.0 100.0 
5959c 100.0 100.0 100.0 100.0 95.9 95.9 
5601c 100.0 100.0 100.0 100.0 100.0 100.0 
5452c 100.0 100.0 100.0 100.0 100.0 100.0 
2955c 100.0 100.0 100.0 100.0 95.9 95.5 
2852c 95.5 95.5 98.4 98.4 98.0 97.1 
2655c 99.6 99.6 100.0 100.0 99.6 99.6 
5816c 100.0 100.0 100.0 100.0 99.6 99.6 
4625c 100.0 100.0 98.4 98.4 94.7 92.7 
3205c 100.0 100.0 100.0 100.0 100.0 100.0 
2854c 100.0 100.0 97.1 97.1 87.4 86.5 
3113c 100.0 100.0 100.0 100.0 100.0 100.0 
4030c 97.1 97.1 91.0 89.8 90.2 87.4 
5203c 100.0 100.0 100.0 100.0 100.0 100.0 

       
Mean 99.4 99.4 98.9 98.8 97.2 96.7 

Standard 
Deviation 

1.4 1.4 2.4 2.8 4.1 4.7 

%Correct =  N-D-S  x  100%  %Accuracy = N-D-S-I  x  100%  Where N is sample size, D is deletions, 
         N               N    S is substitutions, and I is insertions. 
% Perfect Sentence Recognition: Measures the percentage of whole sentences completely and correctly recognized (no individual word errors). 
 
4. Summary 

The physiological sensor demonstrates clear and convincing superiority over the airborne acoustic sensor 
when exposed to noisy environments at and below 3dB SNR.  We feel confident of this performance 
trend will be sustained in other types of noise.  This pilot study strongly suggests the need for further 



 

 

experiments using the physiological sensor with larger, more diverse subjects, and under more extreme 
and varied noise types.  Scope will also expand to include multi-modal (gesture, gaze, lip reading, etc.) 
input devices and data fusion paradigms. 
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